834 research outputs found

    Erik Oddvar Eriksen og John Erik Fossum (red.): Det norske paradoks. Om Norges forhold til Den europeiske union

    Get PDF
    Vid en jämförelse framstår den akademiska debatten i Norge om EU och dess demokratiska konsekvenser som mer levande och vital än den i Sverige. Visserligen kämpar även norska akademiker mot ett ointresse bland politiker, journalister och hos allmänheten, men det verkar finnas en skillnad i intresse och i möjligheterna till finansiering för forskning. Kanske är det oklarheterna kring det ââ¬Ânästan medlemskapââ¬Â som följer av EÃS-avtalet som bidrar till intresse i Norge? Möjligen är det faktum att man i Norge till skillnad från Sverige tidigt lyckades etablera ett långsiktigt och fristående samhällsvetenskapligt forskningsprogram, ARENA, som utgör den huvudsakliga skillnaden? Bägge faktorerna bidrar säkert, men det faktum att ARENA har funnits och haft god finansiering har gjort att debatten verkar ha en annan tyngd i Norge â åtminstone i meningen att det finns något fler forskare som lyfter fram och publicerar både normativa och empiriska bidrag till debatten om demokratin, nationalstaten och EU. Boken Den norske paradoks är ett sådant bidrag. Författarna väljer att lyfta fram relationen mellan EU och den norska demokratin utifrån ââ¬Âgrunnlovsideen â et konstitusjonelt styresett basert på en demokratisk grunnlovââ¬Â (sidan 11). Det är därför med förväntan som jag läser boken

    Dimensional analysis of MINMOD leads to definition of the disposition index of glucose regulation and improved simulation algorithm

    Get PDF
    BACKGROUND: Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT) together with its mathematical model, the minimal model (MINMOD), have become important clinical tools to evaluate the metabolic control of glucose in humans. Dimensional analysis of the model is up to now not available. METHODS: A formal dimensional analysis of MINMOD was carried out and the degree of freedom of MINMOD was examined. Through re-expressing all state variable and parameters in terms of their reference scales, MINMOD was transformed into a dimensionless format. Previously defined physiological indices including insulin sensitivity, glucose effectiveness, and first and second phase insulin responses were re-examined in this new formulation. Further, the parameter estimation from FSIVGTT was implemented using both the dimensional and the dimensionless formulations of MINMOD, and the performances were compared utilizing Monte Carlo simulation as well as real human FSIVGTT data. RESULTS: The degree of freedom (DOF) of MINMOD was found to be 7. The model was maximally simplified in the dimensionless formulation that normalizes the variation in glucose and insulin during FSIVGTT. In the new formulation, the disposition index (Dl), a composite parameter known to be important in diabetes pathology, was naturally defined as one of the dimensionless parameters in the system. The numerical simulation using the dimensionless formulation led to a 1.5–5 fold gain in speed, and significantly improved accuracy and robustness in parameter estimation compared to the dimensional implementation. CONCLUSION: Dimensional analysis of MINMOD led to simplification of the model, direct identification of the important composite factors in the dynamics of glucose metabolic control, and better simulations algorithms

    Observer-Based State Feedback for Enhanced Insulin Control of Type ‘I’ Diabetic Patients

    Get PDF
    During the past few decades, biomedical modeling techniques have been applied to improve performance of a wide variety of medical systems that require monitoring and control. Diabetes is one of the most important medical problems. This paper focuses on designing a state feedback controller with observer to improve the performance of the insulin control for type ‘I’ diabetic patients. The dynamic model of glucose levels in diabetic patients is a nonlinear model. The system is a typical fourth-order single-input-single-output state space model. Using a linear time invariant controller based on an operating condition is a common method to simplify control design. On the other hand, adaptive control can potentially improve system performance. But it increases control complexity and may create further stability issues. This paper investigates patient models and presents a simplified control scheme using observer-based feedback controllers. By comparing different control schemes, it shows that a properly designed state feedback controller with observer can eliminate the adaptation strategy that the Proportional-Integral-Derivative (PID) controllers need to improve the control performance. Control strategies are simulated and their performance is evaluated in MATLAB and Simulink

    The Virtual Physiological Human: Ten Years After

    Get PDF
    Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype–phenotype interaction and by a “systemic” nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible—the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done

    Phase diagram of bismuth in the extreme quantum limit

    Full text link
    Elemental bismuth provides a rare opportunity to explore the fate of a three-dimensional gas of highly mobile electrons confined to their lowest Landau level. Coulomb interaction, neglected in the band picture, is expected to become significant in this extreme quantum limit with poorly understood consequences. Here, we present a study of the angular-dependent Nernst effect in bismuth, which establishes the existence of ultraquantum field scales on top of its complex single-particle spectrum. Each time a Landau level crosses the Fermi level, the Nernst response sharply peaks. All such peaks are resolved by the experiment and their complex angular-dependence is in very good agreement with the theory. Beyond the quantum limit, we resolve additional Nernst peaks signaling a cascade of additional Landau sub-levels caused by electron interaction

    Holographic flows to IR Lifshitz spacetimes

    Full text link
    Recently we studied `vanishing' horizon limits of `boosted' black D3-brane geometry \cite{hsnr}. The type IIB solutions obtained by taking these special double limits were found to describe nonrelativistic Lifshitz spacetimes at zero temperature. In the present work we study these limits for TsT black-hole solutions which include BB-field. The new Galilean solutions describe a holographic RG flow from Schr\"odinger (a=2a=2) spacetime in UV to a Lifshitz universe (a=3a=3) in the IR.Comment: 10 pages; v2: A bad typo in eq.8 corrected; v3: Discussion and reference on Kaigorodov spaces included, correction in sec-3, to be published in JHE

    Modelling the effects of glucagon during glucose tolerance testing.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2019-12-01, epub 2019-12-12Publication status: PublishedBACKGROUND:Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients. The importance of such tests has prompted the development and utilisation of mathematical models that describe glucose kinetics as a function of insulin activity. The hormone glucagon, also plays a fundamental role in systemic plasma glucose regulation and is secreted reciprocally to insulin, stimulating catabolic glucose utilisation. However, regulation of glucagon secretion by α-cells is impaired in type-1 and type-2 diabetes through pancreatic islet dysfunction. Despite this, inclusion of glucagon activity when modelling the glucose kinetics during glucose tolerance testing is often overlooked. This study presents two mathematical models of a glucose tolerance test that incorporate glucose-insulin-glucagon dynamics. The first model describes a non-linear relationship between glucagon and glucose, whereas the second model assumes a linear relationship. RESULTS:Both models are validated against insulin-modified and glucose infusion intravenous glucose tolerance test (IVGTT) data, as well as insulin infusion data, and are capable of estimating patient glucose effectiveness (sG) and insulin sensitivity (sI). Inclusion of glucagon dynamics proves to provide a more detailed representation of the metabolic portrait, enabling estimation of two new diagnostic parameters: glucagon effectiveness (sE) and glucagon sensitivity (δ). CONCLUSIONS:The models are used to investigate how different degrees of pax'tient glucagon sensitivity and effectiveness affect the concentration of blood glucose and plasma glucagon during IVGTT and insulin infusion tests, providing a platform from which the role of glucagon dynamics during a glucose tolerance test may be investigated and predicted

    A critical review of mathematical models and data used in diabetology

    Get PDF
    The literature dealing with mathematical modelling for diabetes is abundant. During the last decades, a variety of models have been devoted to different aspects of diabetes, including glucose and insulin dynamics, management and complications prevention, cost and cost-effectiveness of strategies and epidemiology of diabetes in general. Several reviews are published regularly on mathematical models used for specific aspects of diabetes. In the present paper we propose a global overview of mathematical models dealing with many aspects of diabetes and using various tools. The review includes, side by side, models which are simple and/or comprehensive; deterministic and/or stochastic; continuous and/or discrete; using ordinary differential equations, partial differential equations, optimal control theory, integral equations, matrix analysis and computer algorithms

    A simple intravenous glucose tolerance test for assessment of insulin sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to find a simple intravenous glucose tolerance test (IVGTT) that can be used to estimate insulin sensitivity.</p> <p>Methods</p> <p>In 20 healthy volunteers aged between 18 and 51 years (mean, 28) comparisons were made between kinetic parameters derived from a 12-sample, 75-min IVGTT and the M<sub>bw </sub>(glucose uptake) obtained during a hyperinsulinemic euglycemic glucose clamp. Plasma glucose was used to calculate the volume of distribution (<it>V</it><sub>d</sub>) and the clearance (<it>CL</it>) of the injected glucose bolus. The plasma insulin response was quantified by the area under the curve (AUC<sub>ins</sub>). Uptake of glucose during the clamp was corrected for body weight (M<sub>bw</sub>).</p> <p>Results</p> <p>There was a 7-fold variation in M<sub>bw</sub>. Algorithms based on the slope of the glucose-elimination curve (<it>CL/V</it><sub>d</sub>) in combination with AUC<sub>ins </sub>obtained during the IVGTT showed statistically significant correlations with M<sub>bw</sub>, the linearity being r<sup>2 </sup>= 0.63-0.83. The best algorithms were associated with a 25-75<sup>th </sup>prediction error ranging from -10% to +10%. Sampling could be shortened to 30-40 min without loss of linearity or precision.</p> <p>Conclusion</p> <p>Simple measures of glucose and insulin kinetics during an IVGTT can predict between 2/3 and 4/5 of the insulin sensitivity.</p

    Advantages of the single delay model for the assessment of insulin sensitivity from the intravenous glucose tolerance test

    Get PDF
    The Minimal Model, (MM), used to assess insulin sensitivity (IS) from Intra-Venous Glucose-Tolerance Test (IVGTT) data, suffers from frequent lack of identifiability (parameter estimates with Coefficients of Variation (CV) less than 52%). The recently proposed Single Delay Model (SDM) is evaluated as a practical alternative
    corecore